\(\int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\) [380]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 109 \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}+\frac {(2 a+b) \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{2 \sqrt {a+b} f}-\frac {\cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f} \]

[Out]

-arctanh((a+b*sec(f*x+e)^2)^(1/2)/a^(1/2))*a^(1/2)/f+1/2*(2*a+b)*arctanh((a+b*sec(f*x+e)^2)^(1/2)/(a+b)^(1/2))
/f/(a+b)^(1/2)-1/2*cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2)/f

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {4224, 457, 101, 162, 65, 214} \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}+\frac {(2 a+b) \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{2 f \sqrt {a+b}}-\frac {\cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f} \]

[In]

Int[Cot[e + f*x]^3*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-((Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]])/f) + ((2*a + b)*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqr
t[a + b]])/(2*Sqrt[a + b]*f) - (Cot[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]^2])/(2*f)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4224

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x)
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{x \left (-1+x^2\right )^2} \, dx,x,\sec (e+f x)\right )}{f} \\ & = \frac {\text {Subst}\left (\int \frac {\sqrt {a+b x}}{(-1+x)^2 x} \, dx,x,\sec ^2(e+f x)\right )}{2 f} \\ & = -\frac {\cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f}+\frac {\text {Subst}\left (\int \frac {-a-\frac {b x}{2}}{(-1+x) x \sqrt {a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{2 f} \\ & = -\frac {\cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f}+\frac {a \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{2 f}-\frac {(2 a+b) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{4 f} \\ & = -\frac {\cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f}+\frac {a \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sec ^2(e+f x)}\right )}{b f}-\frac {(2 a+b) \text {Subst}\left (\int \frac {1}{-1-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sec ^2(e+f x)}\right )}{2 b f} \\ & = -\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}+\frac {(2 a+b) \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{2 \sqrt {a+b} f}-\frac {\cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.91 (sec) , antiderivative size = 527, normalized size of antiderivative = 4.83 \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {e^{i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos (e+f x) \left (\frac {1+e^{2 i (e+f x)}}{\left (-1+e^{2 i (e+f x)}\right )^2}-\frac {-2 i \sqrt {a} \sqrt {a+b} f x+(2 a+b) \log \left (1-e^{2 i (e+f x)}\right )+\sqrt {a} \sqrt {a+b} \log \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )+\sqrt {a} \sqrt {a+b} \log \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-2 a \log \left (a+b+a e^{2 i (e+f x)}+b e^{2 i (e+f x)}+\sqrt {a+b} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-b \log \left (a+b+a e^{2 i (e+f x)}+b e^{2 i (e+f x)}+\sqrt {a+b} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )}{\sqrt {a+b} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \sqrt {a+b \sec ^2(e+f x)}}{\sqrt {2} f \sqrt {a+2 b+a \cos (2 e+2 f x)}} \]

[In]

Integrate[Cot[e + f*x]^3*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f*x]*((1 + E^((2*I)*(
e + f*x)))/(-1 + E^((2*I)*(e + f*x)))^2 - ((-2*I)*Sqrt[a]*Sqrt[a + b]*f*x + (2*a + b)*Log[1 - E^((2*I)*(e + f*
x))] + Sqrt[a]*Sqrt[a + b]*Log[a + 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 +
 E^((2*I)*(e + f*x)))^2]] + Sqrt[a]*Sqrt[a + b]*Log[a + a*E^((2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f*x)) + Sqrt
[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - 2*a*Log[a + b + a*E^((2*I)*(e + f*x)) + b
*E^((2*I)*(e + f*x)) + Sqrt[a + b]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - b*Log[a +
b + a*E^((2*I)*(e + f*x)) + b*E^((2*I)*(e + f*x)) + Sqrt[a + b]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)
*(e + f*x)))^2]])/(Sqrt[a + b]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]))*Sqrt[a + b*Sec[
e + f*x]^2])/(Sqrt[2]*f*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]])

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2755\) vs. \(2(91)=182\).

Time = 1.39 (sec) , antiderivative size = 2756, normalized size of antiderivative = 25.28

method result size
default \(\text {Expression too large to display}\) \(2756\)

[In]

int(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/8/f/(a+b)^(5/2)*((a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f
*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)/((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^2)^(1/2)*((1-cos(f*x+e))^2*cs
c(f*x+e)^2-1)*(8*a^(3/2)*ln(4*(-a*(1-cos(f*x+e))^2*csc(f*x+e)^2+a^(1/2)*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-
cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)+a)/(
(1-cos(f*x+e))^2*csc(f*x+e)^2+1))*(1-cos(f*x+e))^2*(a+b)^(3/2)*csc(f*x+e)^2-(a+b)^(3/2)*(a*(1-cos(f*x+e))^4*cs
c(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2
+a+b)^(1/2)*a*(1-cos(f*x+e))^4*csc(f*x+e)^4-(a+b)^(3/2)*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*cs
c(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*b*(1-cos(f*x+e))^4*c
sc(f*x+e)^4+8*a^(1/2)*ln(4*(-a*(1-cos(f*x+e))^2*csc(f*x+e)^2+a^(1/2)*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos
(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)+a)/((1-
cos(f*x+e))^2*csc(f*x+e)^2+1))*(1-cos(f*x+e))^2*(a+b)^(3/2)*b*csc(f*x+e)^2+a*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+
b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)
*(1-cos(f*x+e))^2*(a+b)^(3/2)*csc(f*x+e)^2-3*b*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^
4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*(1-cos(f*x+e))^2*(a+b)^(3/2)*
csc(f*x+e)^2+4*ln((a*(1-cos(f*x+e))^2*csc(f*x+e)^2+b*(1-cos(f*x+e))^2*csc(f*x+e)^2+(a*(1-cos(f*x+e))^4*csc(f*x
+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)
^(1/2)*(a+b)^(1/2)-a+b)/(a+b)^(1/2))*a^3*(1-cos(f*x+e))^2*csc(f*x+e)^2+10*ln((a*(1-cos(f*x+e))^2*csc(f*x+e)^2+
b*(1-cos(f*x+e))^2*csc(f*x+e)^2+(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*
x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*(a+b)^(1/2)-a+b)/(a+b)^(1/2))*a^2*(1-cos(f*x
+e))^2*b*csc(f*x+e)^2+8*a*ln((a*(1-cos(f*x+e))^2*csc(f*x+e)^2+b*(1-cos(f*x+e))^2*csc(f*x+e)^2+(a*(1-cos(f*x+e)
)^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*
x+e)^2+a+b)^(1/2)*(a+b)^(1/2)-a+b)/(a+b)^(1/2))*b^2*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*ln((a*(1-cos(f*x+e))^2*csc
(f*x+e)^2+b*(1-cos(f*x+e))^2*csc(f*x+e)^2+(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a
*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*(a+b)^(1/2)-a+b)/(a+b)^(1/2))*b^3*
(1-cos(f*x+e))^2*csc(f*x+e)^2-4*a^3*ln(2/(1-cos(f*x+e))^2*(-a*(1-cos(f*x+e))^2+b*(1-cos(f*x+e))^2+(a*(1-cos(f*
x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*cs
c(f*x+e)^2+a+b)^(1/2)*(a+b)^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^2+b*sin(f*x+e)^2))*(1-cos(f*x+e))^2*csc(f*x+e)^2-1
0*a^2*ln(2/(1-cos(f*x+e))^2*(-a*(1-cos(f*x+e))^2+b*(1-cos(f*x+e))^2+(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(
f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*(a+b)^(1
/2)*sin(f*x+e)^2+a*sin(f*x+e)^2+b*sin(f*x+e)^2))*(1-cos(f*x+e))^2*b*csc(f*x+e)^2-8*b^2*ln(2/(1-cos(f*x+e))^2*(
-a*(1-cos(f*x+e))^2+b*(1-cos(f*x+e))^2+(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1
-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*(a+b)^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)
^2+b*sin(f*x+e)^2))*(1-cos(f*x+e))^2*a*csc(f*x+e)^2-2*b^3*ln(2/(1-cos(f*x+e))^2*(-a*(1-cos(f*x+e))^2+b*(1-cos(
f*x+e))^2+(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2
*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*(a+b)^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^2+b*sin(f*x+e)^2))*(1-cos(f*
x+e))^2*csc(f*x+e)^2+(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc
(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(3/2)*(a+b)^(3/2))/(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(
f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)/(1-cos(f
*x+e))^2*sin(f*x+e)^2

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 289 vs. \(2 (91) = 182\).

Time = 0.56 (sec) , antiderivative size = 1342, normalized size of antiderivative = 12.31 \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\text {Too large to display} \]

[In]

integrate(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(4*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 + ((a + b)*cos(f*x + e)^2 - a - b)*
sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x
+ e)^2 + b^4 - 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x + e)^4 + b^3*cos(f*x + e)
^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) + ((2*a + b)*cos(f*x + e)^2 - 2*a - b)*sqrt(a + b)*lo
g(2*((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e)^2 + b^2 + 4*((2*a + b)*cos(f*x + e)
^4 + b*cos(f*x + e)^2)*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(cos(f*x + e)^4 - 2*cos(f*x +
e)^2 + 1)))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f), 1/8*(4*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)
*cos(f*x + e)^2 - 2*((2*a + b)*cos(f*x + e)^2 - 2*a - b)*sqrt(-a - b)*arctan(1/2*((2*a + b)*cos(f*x + e)^2 + b
)*sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a^2 + a*b)*cos(f*x + e)^2 + a*b + b^2)) + ((a + b
)*cos(f*x + e)^2 - a - b)*sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*x
+ e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 - 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x
 + e)^4 + b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)))/((a + b)*f*cos(f*x + e)^2
- (a + b)*f), 1/8*(4*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 + 2*((a + b)*cos(f*x +
 e)^2 - a - b)*sqrt(-a)*arctan(1/4*(8*a^2*cos(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt((a*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x + e)^4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2)) + ((2*a + b)*cos(f*x +
e)^2 - 2*a - b)*sqrt(a + b)*log(2*((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e)^2 + b
^2 + 4*((2*a + b)*cos(f*x + e)^4 + b*cos(f*x + e)^2)*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/
(cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f), 1/4*(2*(a + b)*sqrt((a*cos(f
*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 + ((a + b)*cos(f*x + e)^2 - a - b)*sqrt(-a)*arctan(1/4*(8*a^2*co
s(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x
 + e)^4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2)) - ((2*a + b)*cos(f*x + e)^2 - 2*a - b)*sqrt(-a - b)*arctan(1/2*((2*
a + b)*cos(f*x + e)^2 + b)*sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a^2 + a*b)*cos(f*x + e)^
2 + a*b + b^2)))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f)]

Sympy [F]

\[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \cot ^{3}{\left (e + f x \right )}\, dx \]

[In]

integrate(cot(f*x+e)**3*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*cot(e + f*x)**3, x)

Maxima [F]

\[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{3} \,d x } \]

[In]

integrate(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*cot(f*x + e)^3, x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 574 vs. \(2 (91) = 182\).

Time = 0.90 (sec) , antiderivative size = 574, normalized size of antiderivative = 5.27 \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {{\left (\frac {16 \, a \arctan \left (-\frac {\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} + \sqrt {a + b}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} - \frac {4 \, {\left (2 \, a + b\right )} \arctan \left (-\frac {\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}}{\sqrt {-a - b}}\right )}{\sqrt {-a - b}} + \frac {2 \, {\left (2 \, a + b\right )} \log \left ({\left | -{\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} {\left (a + b\right )} + \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{\sqrt {a + b}} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} - \frac {2 \, {\left ({\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} {\left (a - b\right )} - {\left (a + b\right )}^{\frac {3}{2}}\right )}}{{\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )}^{2} - a - b}\right )} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}{8 \, f} \]

[In]

integrate(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

1/8*(16*a*arctan(-1/2*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/
2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b))/sqrt(-a))/sqrt(-a) -
4*(2*a + b)*arctan(-(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*
e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))/sqrt(-a - b))/sqrt(-a - b) + 2*(2*a +
 b)*log(abs(-(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 -
2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*(a + b) + sqrt(a + b)*(a - b)))/sqrt(a + b)
+ sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/
2*e)^2 + a + b) - 2*((sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2
*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*(a - b) - (a + b)^(3/2))/((sqrt(a +
b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e
)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))^2 - a - b))*sgn(cos(f*x + e))/f

Mupad [F(-1)]

Timed out. \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int {\mathrm {cot}\left (e+f\,x\right )}^3\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \]

[In]

int(cot(e + f*x)^3*(a + b/cos(e + f*x)^2)^(1/2),x)

[Out]

int(cot(e + f*x)^3*(a + b/cos(e + f*x)^2)^(1/2), x)